skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gregory, Geoffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The intrinsic and doped amorphous silicon layers in silicon heterojunction solar cells parasitically absorb light in the short wavelength region of the solar spectrum, lowering the generation current available to the device. Herein, a promising alternative to the hole‐selective amorphous silicon contact layers using only wide bandgap, transparent oxide materials is presented. Using thermal atomic layer deposition, a 1 nm hydrogenated aluminum oxide layer is deposited followed by a 4 nm molybdenum oxide layer on n‐type crystalline silicon. This contact stack provides an effective carrier lifetime of 1.14 ms. It is shown that the molybdenum oxide layer is successfully deposited with a high work function, which facilitates efficient hole extraction and repels majority carriers from the c‐Si surface. Then the implied open‐circuit voltage, saturation current density, and contact resistivity are recorded as a function of contact annealing temperature and show that they are relatively stable up to 200 °C. 
    more » « less